现在位置: 首页 > Pandas 教程 > 正文

Pandas 简介

Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。

Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。

Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。

Pandas 主要引入了两种新的数据结构:SeriesDataFrame

  • Series: 类似于一维数组或列表,是由一组数据以及与之相关的数据标签(索引)构成。Series 可以看作是 DataFrame 中的一列,也可以是单独存在的一维数据结构。

  • DataFrame: 类似于一个二维表格,它是 Pandas 中最重要的数据结构。DataFrame 可以看作是由多个 Series 按列排列构成的表格,它既有行索引也有列索引,因此可以方便地进行行列选择、过滤、合并等操作。

DataFrame 可视为由多个 Series 组成的数据结构:

下面这张图展示了两个 Series 对象相加得到一个 DataFrame 对象:

DataFrame 由 Index、Key、Value 组成:

实例

import pandas as pd

# 创建两个Series对象
series_apples = pd.Series([1, 3, 7, 4])
series_bananas = pd.Series([2, 6, 3, 5])

# 将两个Series对象相加,得到DataFrame,并指定列名
df = pd.DataFrame({ 'Apples': series_apples, 'Bananas': series_bananas })

# 显示DataFrame
print(df)

输出结果为:

   Apples  Bananas
0       1        2
1       3        6
2       7        3
3       4        5

Pandas 特点

高效的数据结构

  • Series:一维数据结构,类似于列表(List),但拥有更强的功能,支持索引。
  • DataFrame:二维数据结构,类似于表格或数据库中的数据表,行和列都具有标签(索引)。

数据清洗与预处理

  • Pandas 提供了丰富的函数来处理缺失值、重复数据、数据类型转换、字符串操作等,帮助用户轻松清理和转换数据。

数据操作与分析

  • 支持高效的数据选择、筛选、切片,按条件提取数据、合并、连接多个数据集、数据分组、汇总统计等操作。
  • 可以进行复杂的数据变换,如数据透视表、交叉表、时间序列分析等。

数据读取与导出

  • 支持从各种格式的数据源读取数据,如 CSV、Excel、JSON、SQL 数据库等。
  • 也可以将处理后的数据导出为不同格式,如 CSV、Excel 等。

数据可视化

  • 通过与 Matplotlib 和其他可视化工具的集成,Pandas 可以快速生成折线图、柱状图、散点图等常见图表。

时间序列分析

  • 支持强大的时间序列处理功能,包括日期的解析、重采样、时区转换等。

性能与优化

  • Pandas 优化了大规模数据处理,提供高效的向量化操作,避免了使用 Python 循环处理数据的低效。
  • 还支持一些内存优化技术,比如使用 category 类型处理重复的数据。

Pandas 应用

Pandas 在数据科学和数据分析领域中具有广泛的应用,其主要优势在于能够处理和分析结构化数据。

以下是 Pandas 的一些主要应用领域:

  • 金融领域:金融机构使用 Pandas 来处理和分析股票市场数据、财务数据、交易数据等。Pandas 的灵活性和高效性使得金融分析师能够快速进行数据清洗、统计分析、建模等工作。

  • 科学研究:科学研究领域经常涉及大量的实验数据、观测数据等,Pandas 提供了强大的工具来处理和分析这些数据,例如天文学、生物学、地球科学等领域。

  • 企业数据分析:各种企业和组织都需要对业务数据进行分析,以支持决策和战略规划。Pandas 提供了处理和分析企业数据的功能,包括销售数据、客户数据、运营数据等。

  • 社交媒体分析:社交媒体平台产生的海量数据需要进行分析来了解用户行为、趋势和情感倾向。Pandas 可以帮助分析师处理和分析社交媒体数据,进行用户行为分析、情感分析等。

  • 医疗保健:医疗保健领域需要处理和分析大量的医疗数据,包括患者数据、临床试验数据、医疗图像数据等。Pandas 提供了处理和分析这些数据的工具,支持医疗研究和临床决策。

  • 教育研究:教育领域可以利用 Pandas 来处理学生表现数据、教学评估数据、课程数据等,从而进行教育研究和改进教学质量。

  • 市场营销:市场营销专业人员可以使用 Pandas 分析市场数据、客户数据、广告数据等,以制定营销策略和优化市场活动效果。

Pandas 在许多领域中都是一种强大而灵活的工具,为数据科学家、分析师和工程师提供了处理和分析数据的便捷方式。